3.55 \(\int \frac{\sqrt{a+c x^2}}{x (d+e x+f x^2)} \, dx\)

Optimal. Leaf size=358 \[ \frac{\left (\left (e-\sqrt{e^2-4 d f}\right ) (c d-a f)+2 a e f\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (e-\sqrt{e^2-4 d f}\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{2} d \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{\left (\left (\sqrt{e^2-4 d f}+e\right ) (c d-a f)+2 a e f\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (\sqrt{e^2-4 d f}+e\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{2} d \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{d} \]

[Out]

((2*a*e*f + (c*d - a*f)*(e - Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2
*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 +
 c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) - ((2*a*e*f + (c*d - a*f)*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c
*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/
(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]) - (Sqrt[a]*ArcTanh[Sqrt[a
+ c*x^2]/Sqrt[a]])/d

________________________________________________________________________________________

Rubi [A]  time = 1.31351, antiderivative size = 358, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {6728, 266, 50, 63, 208, 1020, 1034, 725, 206} \[ \frac{\left (\left (e-\sqrt{e^2-4 d f}\right ) (c d-a f)+2 a e f\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (e-\sqrt{e^2-4 d f}\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{2} d \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{\left (\left (\sqrt{e^2-4 d f}+e\right ) (c d-a f)+2 a e f\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (\sqrt{e^2-4 d f}+e\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{2} d \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + c*x^2]/(x*(d + e*x + f*x^2)),x]

[Out]

((2*a*e*f + (c*d - a*f)*(e - Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2
*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 +
 c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) - ((2*a*e*f + (c*d - a*f)*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c
*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/
(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]) - (Sqrt[a]*ArcTanh[Sqrt[a
+ c*x^2]/Sqrt[a]])/d

Rule 6728

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 1020

Int[((g_.) + (h_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[(h*(a + c*x^2)^p*(d + e*x + f*x^2)^(q + 1))/(2*f*(p + q + 1)), x] + Dist[1/(2*f*(p + q + 1)), Int[(a + c*x^2)
^(p - 1)*(d + e*x + f*x^2)^q*Simp[a*h*e*p - a*(h*e - 2*g*f)*(p + q + 1) - 2*h*p*(c*d - a*f)*x - (h*c*e*p + c*(
h*e - 2*g*f)*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, g, h, q}, x] && NeQ[e^2 - 4*d*f, 0] && GtQ[
p, 0] && NeQ[p + q + 1, 0]

Rule 1034

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c
*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[
b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a+c x^2}}{x \left (d+e x+f x^2\right )} \, dx &=\int \left (\frac{\sqrt{a+c x^2}}{d x}+\frac{(-e-f x) \sqrt{a+c x^2}}{d \left (d+e x+f x^2\right )}\right ) \, dx\\ &=\frac{\int \frac{\sqrt{a+c x^2}}{x} \, dx}{d}+\frac{\int \frac{(-e-f x) \sqrt{a+c x^2}}{d+e x+f x^2} \, dx}{d}\\ &=-\frac{\sqrt{a+c x^2}}{d}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a+c x}}{x} \, dx,x,x^2\right )}{2 d}+\frac{\int \frac{-a e f+f (c d-a f) x}{\sqrt{a+c x^2} \left (d+e x+f x^2\right )} \, dx}{d f}\\ &=\frac{a \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+c x}} \, dx,x,x^2\right )}{2 d}-\frac{\left (2 a e f+(c d-a f) \left (e-\sqrt{e^2-4 d f}\right )\right ) \int \frac{1}{\left (e-\sqrt{e^2-4 d f}+2 f x\right ) \sqrt{a+c x^2}} \, dx}{d \sqrt{e^2-4 d f}}+\frac{\left (2 a e f+(c d-a f) \left (e+\sqrt{e^2-4 d f}\right )\right ) \int \frac{1}{\left (e+\sqrt{e^2-4 d f}+2 f x\right ) \sqrt{a+c x^2}} \, dx}{d \sqrt{e^2-4 d f}}\\ &=\frac{a \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{c}+\frac{x^2}{c}} \, dx,x,\sqrt{a+c x^2}\right )}{c d}+\frac{\left (2 a e f+(c d-a f) \left (e-\sqrt{e^2-4 d f}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 a f^2+c \left (e-\sqrt{e^2-4 d f}\right )^2-x^2} \, dx,x,\frac{2 a f-c \left (e-\sqrt{e^2-4 d f}\right ) x}{\sqrt{a+c x^2}}\right )}{d \sqrt{e^2-4 d f}}-\frac{\left (2 a e f+(c d-a f) \left (e+\sqrt{e^2-4 d f}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 a f^2+c \left (e+\sqrt{e^2-4 d f}\right )^2-x^2} \, dx,x,\frac{2 a f-c \left (e+\sqrt{e^2-4 d f}\right ) x}{\sqrt{a+c x^2}}\right )}{d \sqrt{e^2-4 d f}}\\ &=\frac{\left (2 a e f+(c d-a f) \left (e-\sqrt{e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac{2 a f-c \left (e-\sqrt{e^2-4 d f}\right ) x}{\sqrt{2} \sqrt{2 a f^2+c \left (e^2-2 d f-e \sqrt{e^2-4 d f}\right )} \sqrt{a+c x^2}}\right )}{\sqrt{2} d \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e^2-2 d f-e \sqrt{e^2-4 d f}\right )}}-\frac{\left (2 a e f+(c d-a f) \left (e+\sqrt{e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac{2 a f-c \left (e+\sqrt{e^2-4 d f}\right ) x}{\sqrt{2} \sqrt{2 a f^2+c \left (e^2-2 d f+e \sqrt{e^2-4 d f}\right )} \sqrt{a+c x^2}}\right )}{\sqrt{2} d \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e^2-2 d f+e \sqrt{e^2-4 d f}\right )}}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{d}\\ \end{align*}

Mathematica [A]  time = 0.733813, size = 314, normalized size = 0.88 \[ \frac{\left (\sqrt{e^2-4 d f}+e\right ) \sqrt{4 a f^2-2 c \left (e \sqrt{e^2-4 d f}+2 d f-e^2\right )} \tanh ^{-1}\left (\frac{2 a f+c x \left (\sqrt{e^2-4 d f}-e\right )}{\sqrt{a+c x^2} \sqrt{4 a f^2-2 c \left (e \sqrt{e^2-4 d f}+2 d f-e^2\right )}}\right )+\left (\sqrt{e^2-4 d f}-e\right ) \sqrt{4 a f^2+2 c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac{2 a f-c x \left (\sqrt{e^2-4 d f}+e\right )}{\sqrt{a+c x^2} \sqrt{4 a f^2+2 c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )-4 \sqrt{a} f \sqrt{e^2-4 d f} \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{4 d f \sqrt{e^2-4 d f}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + c*x^2]/(x*(d + e*x + f*x^2)),x]

[Out]

((e + Sqrt[e^2 - 4*d*f])*Sqrt[4*a*f^2 - 2*c*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])]*ArcTanh[(2*a*f + c*(-e + Sqr
t[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 - 2*c*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])] + (-e + Sqrt[e^
2 - 4*d*f])*Sqrt[4*a*f^2 + 2*c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])
*x)/(Sqrt[4*a*f^2 + 2*c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])] - 4*Sqrt[a]*f*Sqrt[e^2 - 4*d*f]
*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/(4*d*f*Sqrt[e^2 - 4*d*f])

________________________________________________________________________________________

Maple [B]  time = 0.266, size = 3544, normalized size = 9.9 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+a)^(1/2)/x/(f*x^2+e*x+d),x)

[Out]

f/(-e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e-(-4*d*f+e^2)^(1/2
))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)+1/(-e+(-4*
d*f+e^2)^(1/2))*c^(1/2)*ln((-1/2*c*(e-(-4*d*f+e^2)^(1/2))/f+(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)*c)/c^(1/2)+((x-1
/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*(-(-4*d*f+e
^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))-1/(-e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*c^(1/2)*ln((-1/2
*c*(e-(-4*d*f+e^2)^(1/2))/f+(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)*c)/c^(1/2)+((x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*
c-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*
e^2)/f^2)^(1/2))*e+1/f/(-e+(-4*d*f+e^2)^(1/2))*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(
1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2
)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)
^(1/2))/f)^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f
^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))*c*e-2*f/(-e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^
(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2
-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(
1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))
/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2*(-e+
(-4*d*f+e^2)^(1/2))/f))*a+2/(-e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f
^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/
f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4
*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*
d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))*c*d-1/f/(-e+(-4*d*f+e
^2)^(1/2))/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*
f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2
^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*
c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)
/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))*c*e^2+4*f/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))*a^(1/
2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x)-4*f/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))*(c*x^2+a)^(1/2)+f/
(e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f
*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)-1/(e+(-4*d*f+e^2
)^(1/2))*c^(1/2)*ln((-1/2*c*(e+(-4*d*f+e^2)^(1/2))/f+(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c)/c^(1/2)+((x+1/2*(e+(-
4*d*f+e^2)^(1/2))/f)^2*c-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*((-4*d*f+e^2)^(1/2)*c
*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))-1/(e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*c^(1/2)*ln((-1/2*c*(e+(-4*d*
f+e^2)^(1/2))/f+(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c)/c^(1/2)+((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-c*(e+(-4*d*f
+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))
*e-1/f/(e+(-4*d*f+e^2)^(1/2))*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+
e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1
/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+
(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(
1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*c*e-2*f/(e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*2^(1/2)/(((-4*d*f+e^
2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e+(-4
*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2
)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2)
)/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*a+2/(e+(-4
*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-
4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/
2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4
*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/
f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*c*d-1/f/(e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*2^(1/2)/(((-4*
d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*
(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f
+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)
^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*c*e^
2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + a}}{{\left (f x^{2} + e x + d\right )} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + a)/((f*x^2 + e*x + d)*x), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + c x^{2}}}{x \left (d + e x + f x^{2}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+a)**(1/2)/x/(f*x**2+e*x+d),x)

[Out]

Integral(sqrt(a + c*x**2)/(x*(d + e*x + f*x**2)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Timed out